

Directions:

* Show your thought process (commonly said as "show your work") when solving each problem for full credit.
* If you do not know how to solve a problem, try your best and/or explain in English what you would do.
* Good luck!

| Problem | Score |
| :---: | :---: | Points | 1 | 10 |
| :---: | :---: |
| 2 | 10 |
| 3 | 10 |
| 4 | 10 |
| 5 | 10 |
| 6 | 10 |

1. Short answer questions:
(a) Suppose you write

$$
(x+y)^{2} z^{2}=x^{2}+y^{2} z^{2}
$$

What are the two errors you made?
(1) x and y are terms. can only manipulate exponents (exponent laws) across factors.
(2) everything to the left of z^{2} should be encapsulated in parentheses since you our multiplying z^{2} into $\geqslant 2$ terms
(b) True or false: We can simplify $\frac{x^{2}+x-2}{x-1}$ by crossing out the x 's to become $\frac{x^{2}-2}{-1}$. If not, properly simplify the expression.

False; x is both a term in the context of the entire numerator and denominator.

$$
\frac{x^{2}+x-2}{x-1}=\frac{(x-1) \cdot(x+2)}{(x-1)}=x+2
$$

(c) If $f(x)=\frac{x}{1-x}$, find $f\left(x^{2}-1\right)$.

$$
f\left(x^{2}-1\right)=\frac{x^{2}-1}{1-\left(x^{2}-1\right)}=\frac{x^{2}-1}{1-x^{2}+1}=\frac{x^{2}-1}{2-x^{2}}
$$

(d) If $i^{2}=-1$, what is i^{531} ?

$$
\begin{aligned}
& i^{531}=i^{530+1} \\
&=i^{530} \cdot i^{1} \\
&=\left(i^{2}\right)^{265} \cdot i \\
&=(-1)^{265} \cdot i \\
&=-i
\end{aligned}
$$

2. Suppose

$$
f(x)= \begin{cases}3 & x>1 \\ x^{2} & x \leq 1\end{cases}
$$

(a) Sketch a graph of $f(x)$.

(b) What is $f(1)$?

$$
f(1)=1^{2}=1
$$

3. Fully simplify the following using relevant properties and laws.

$$
A^{2}-B^{2} \text {, terms }
$$

$$
\text { (a) } \begin{aligned}
\left(\frac{4 x^{2} y}{5 z^{-1}}\right)^{2} \cdot \frac{1}{x^{2} z^{2}} & =\left(\frac{4 x^{2} y z}{5}\right)^{2} \\
& =\frac{\left(4 x^{2} y z\right)^{2}}{x^{2} z^{2}} \\
& =\frac{1}{5^{2}} \cdot \frac{1}{x^{2} z^{2}} \\
& =\frac{16 x^{4} y^{2} z^{2}}{25 y^{2}} x^{2} z^{2} \\
& =\frac{16 z^{2} y^{2}}{25}
\end{aligned}
$$

subtraction of fractional expressions. Find LCD. Nail frito.

$$
\text { fortes }=\left(\frac{1}{\left(\frac{1}{(x) \mid(x+1)}\right.}-\frac{2}{x-1}\right)^{2}
$$

$$
=\left(\frac{1}{(x-1)(x+1)}-\frac{2}{x-1} \cdot \frac{(x+1)}{(x+1)}\right)^{2}
$$

$$
=\left(\frac{1}{(x-1)(x+1)}-\frac{2(x+1)}{(x-1)(x+1)}\right)^{2}
$$

$$
=\left(\frac{1-2 x-2}{(x-1)(x+1)}\right)^{2}
$$

$$
\begin{aligned}
> & =\frac{(1-2 x)^{2}}{((x-1)(x+1))^{2}} \\
& =\frac{(1-2 x)^{2}}{(x-1)^{2}(x+1)^{2}}
\end{aligned}
$$

$$
=\left(\frac{1-2 x}{(x-1)(x+1)}\right)^{2}
$$

4. Given $a x-b x(c+d)-e x=g x$, isolate x.

$$
\begin{aligned}
& a x-b c x-b d x-c x=g x \\
& a x-b c x-b d x-c x-g x=0 \\
& x \cdot \frac{(a-b c-b d-e-g)}{a-b c-b d-c-y}=\frac{0}{a-b c-b d-c-g} \\
& x=0
\end{aligned}
$$

5. Solve for x. Check your work if necessary.

$$
\begin{aligned}
& x+1=\sqrt{5-x} \\
& (x+1)^{2}=(\sqrt{5-x})^{2} \\
& x^{2}+2 x+1=5-x \\
& x^{2}+3 x-4=0 \\
& (x+4)(x-1)=0 \\
& x+4=0, x-1=0 \\
& x=-4, x=1
\end{aligned}
$$

Check $x=-4$

$$
\begin{aligned}
-4+1 & =\sqrt{5-(-4)} \\
-3 & =\sqrt{7} \\
-3 & =3
\end{aligned}
$$

extraneous
chick $x=1$

$$
1+1=\sqrt{5-1}
$$

$$
2=\sqrt{4}
$$

$$
2=2
$$

Solution $x=1$
6. Fully factor and simplify

$$
\begin{aligned}
& \text { Let } y=x^{3}+x^{2}+x+1 \quad \text { Substituting: } \\
& \left.y^{2}-2 y+1 \rightarrow 1-1\right)^{2}-2\left(x^{3}+x^{2}+x+1\right)+1 \\
& =(y-1)^{2} \\
& =\left(x^{3}+x^{2}+x+1-1\right)^{2} \\
& =\left(x^{3}+x^{2}+x\right)^{2}
\end{aligned}
$$

